

Editor-in-Chief: Olufemi E. Idowu. Neurological surgery Division, Department of Surgery, LASUCOM/LASUTH, Ikeja, Lagos, Nigeria.

Copyright- Frontiers of Ikeja Surgery, 2015; 1:4

CLINICAL VIGNETTE 2015; 1:4

Arterial Blood Gas Analysis

Arterial Blood Gas Analysis

Ademola A. Adesina Department of Surgery, LASUTH, Ikeja, Lagos, Nigeria.

Copyright- Frontiers of Ikeja Surgery, 2015; 1:4

INTRODUCTION

- Arterial blood gas (ABG) measures Acidity, Oxygen tension (PaO₂), Carbon dioxide tension (PaCO₂), Oxyhaemoglobin saturation and Bicarbonate concentration
- *Some blood analyzers also measures- Methaemoglobin,

Carboxyhaemoglobin and Haemoglobin levels

• Essential for diagnosing, monitoring a patient oxygenation status/gas exchange & acid base balance (whether patient is on mechanical ventilator or not)

*Change in H⁺ concentration is responded to by BICARBONATE BUFFER SYSTEM in few seconds, RESPIRATORY REGULATION in few minutes & RENAL REGULATION in hours to days

*Normal ABG result does not rule out acid base imbalance

ABG COMPONENTS & NORMAL VALUES

- pH- hydrogen ion concentration (7.35-7.45)
- **PaCO₂** pressure of CO₂ in the blood (35-45mmHg)
- **PaO₂** pressure of O₂ dissolved in the blood (72-104mmHg)
- Oxygen saturation- amount of oxygen in the blood (95-100%)
- HCO_3^{-1} kidney ability to retain and excrete bicarbonate (22-26mEq/L)
- Electrolytes- Na, K
- Base Excess- assessment of metabolic acidosis/alkalosis (+ 2mEq/L)
- Anion Gap- Difference in measured cations and anions (12 ± 4)
- *O₂ Saturation measured by pulse oximeter- SpO₂
- *O₂ Saturation measured by CO-oximeter- SaO₂

CLINICAL CORRELATE

- PH- Determines presence of acidaemia or alkalaemia
 PaO₂-
- Reflect gas exchange in the lung
- From ventilation perfusion mismatch or hypoventilation
- Decreases with age
- *PaO2 :FiO2< 300mmHg- Acute lung injury
- *PaO2:FiO2<200mmHg- Acute respiratory distress
- PaCO₂-
- Reflect the state of alveolar ventilation
- Elevated PaCO2 reflects alveolar hypoventilation
- Decrease PaCO2 reflects hyperventilation

OBTAINING A BLOOD SAMPLE

- Explain procedure to the patient and obtain Consent
- Check vital sign
- Materials- Heparinized 1ml syringe, heparinized needle (23-26G)
- Perform Allen's test when using radial artery
- Other Arterial sites: brachial, femoral, dorsalis pedis

ABG ANALYZERS

- i-STAT and I-STAT I Portable Clinical Analyzer
- i- STAT Cartridges(i-stat G3 Cartridges)
- Stored at 2- 8°C
- Cartridge are used at room temperature
- About 30 minutes to reach room temperarure
- I-STAT Calibration verification material

ACID BASE DISORDERS...

RESPIRATORY ACIDOSIS

pH<7.35; PaCO₂> 45mmHg

- CNS DEPRESSION- Head injury, Narcotic, Sedatives
- Neuromuscular disease
- Pulmonary disorder
- Hypoventilation- Pain, chest trauma, deformity

RESPIRATORY ALKALOSIS

pH>7.45; PaCO₂<35mmHg

- Metabolic demand: fever, sepsis
- Drugs: respiratory stimulant

ACID BASE DISORDERS

METABOLIC ACIDOSIS

pH<7.35; HCO₃<22mEq/L; Negative base excess

- Renal failure
- Diabetic ketoacidosis (DKA)
- Salicylate poisoning
- Starvation

METABOLIC ALKALOSIS

pH>7.45; HCO₃>26mEq/L; Positive base excess

- Ingestion of antacid
- Excess use of bicarbonate
- Loss of acid protacted vomiting, excess diuretics

<u>High anion gap</u> Indicative of acidosis

- lactic acidosis
- ketoacidosis: DKA, Alcohol abuse
- Toxin- methanol, ethylene glycol, ureamia, aspirin, cyanide
- Renal failure

Low anion gap

Caused by hypoalbuminemia

- Nephrotic syndrome
- Liver cirrhosis

INTERPRETATION...

	рН	PaCO ₂	PaO ₂	Base excess	HCO ₃
Respiratory acidosis	Low	Increased	Normal	Normal/Increased	Normal
Respiratory alkalosis	High	Low	Normal	Normal/Decreased	Normal
Metabolic acidosis	Low	Normal	Normal	Reduced	Reduce
Metabolic alkalosis	High	Normal	Normal	Increased	Elevated

INTERPRETATION

	рН	PaCO ₂ (mmHg)	HCO ₃ ⁻ (mEq/L)
Respiratory Acidosis			
Acute	<7.35	>45	Normal
Partly compensated	<7.35	>45	>26
Compensated	Normal	>45	>26
Respiratory Alkalosis			
Acute	>7.45	<35	Normal
Partly compensated	>7.45	<35	<22
Compensated	Normal	<35	<22
Metabolic Acidosis			
Acute	<7.35	Normal	<22
Partly compensated	<7.35	<35	<22
Compensated	Normal	<35	<22
Metabolic Alkalosis			
Acute	>7.45	Normal	>26
Partly compensated	>7.45	>45	>26
Compensated	Normal	>45	>26

CASE SCENARIO: 50-year-old man with multisystem trauma, deteriorating 5 days after admission.

рН	7.25	Interpretation	
PO ₂	90mmHg	ACIDAEMIA- pH of 7.25	
PCO ₂	22mmHg	 METABOLIC- PCO₂ ANION GAP= Na – (HCO3 +CI) 	
SO ₂	95%		
Actual HCO ₃ ⁻	10.3mEq/L	$- 120 (10.2 \pm 100)$	
Na⁺	139mEq/L	$- 139-(10.3\pm100)$	
Cl⁻	100mEq/L	= 28.7 =HIGH	

FACTORS INFLUENCING ABG RESULTS

*Delayed processing may yield falsely low PaO₂
*Air bubbles introduced during arterial puncture can lead to falsely high PaO₂ and low PaCO₂.
*Body temperature can affect blood gas tension

LIMITATIONS OF ABG ANALYSIS

- It cannot yield specific diagnosis
- The analysis does not reflect the degree to which an abnormality actually affect a patient
- Cannot be used as a screening test for early pulmonary disease

CONCLUSION

- ABG results shows if the patient is acidaemic or alkalaemic and whether the cause is likely to have a respiratory or metabolic component
- Useful adjunct to the assessment of patient with acute/chronic disease and in mechanically ventilated patients in ICU or intraoperatively
- When combined with patient clinical features its analysis can facilitate diagnosis

REFERENCES

- 1. Severinghaus JW, Astrup P, Murray JF. Blood Gas analysis and critical care medicine. Am j Resp Crit care med. 1998; 157:S114-22.
- 2. Burden and McQuillan. BJA. 1997; 74:479
- 3. Williams AJ.ABC of oxygen :assessing and interpreting arterial blood gases and acid base balance. BMJ. 1998; 317:1213-6
- 4. O' Driscoll BR, Howard LS, Davison AG. BTS guideline for emergency oxtgen use in adult patients. Thorax. 2008; 63:1-68.